If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25z^2-100z+93=0
a = 25; b = -100; c = +93;
Δ = b2-4ac
Δ = -1002-4·25·93
Δ = 700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{700}=\sqrt{100*7}=\sqrt{100}*\sqrt{7}=10\sqrt{7}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-10\sqrt{7}}{2*25}=\frac{100-10\sqrt{7}}{50} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+10\sqrt{7}}{2*25}=\frac{100+10\sqrt{7}}{50} $
| -71=3x=4x-29 | | 3x-3+66=123 | | 5x-7=5(x+1) | | 3(y-9)=-6y+9 | | 7.3=2x/0.3-x | | -3=3(x+6)-6x | | 3w=1=10 | | 5b-10b=14 | | 6(v-6)-8v=-18 | | 3x+30+6x-12=90 | | 7v+42=9(v+6) | | 9x-42=90 | | 4(x-4)=3x-5 | | 7z+3/4=8z+5/4 | | 1/2x-15=4 | | 7y-21=3y-9 | | 8p-7p=18 | | 9x+4x-7x-5=25 | | 3/2(2/3)q=3/2(1/2) | | -4.9x^2+13.54x+35=0 | | 7n+12=1/4(14n+24) | | x–2=-7 | | .50x+.45(30=43.5 | | 25w=15125 | | 86+c/2=90 | | (12000/x)=8000 | | 3y+7=2(y+5) | | x=55-0.2(24) | | 9x-(7x-6)=20 | | 20x=545 | | 8x^2+18x=-20+32 | | 3x+14×+16=0 |